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Starting from the master equations we derive the kinetic equations for the 
concentrations of chemical species. Both adiabatic and nonadiabatic rate pro- 
cesses are analyzed. In limiting cases, the results of the work conform to those of 
Widom ~9) and  Gibbs, Fleming, and co-workers. (4'5) 
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1. INTRODUCTION 

One cannot overestimate the importance of the theory of rate processes in 
diverse areas of chemical physics and biophysics; nevertheless, our under- 
standing of the theoretical basis of many rate processes is not complete 
even now. This is true both of the equations themselves and of their 
coefficients--the rate constants. 

The problem of rate processes may be approached at various levels. 
The "upper" level is the derivation of rate equations and their coefficients 
from first principles, i.e., from the von Neumann equation for the density 
matrix of a closed system. 

In the typical situation it is possible to divide the whole system into 
two parts. One part contains the subsystem we are interested in, e.g., the 
reacting molecules in the case of chemical reactions; the other part contains 

�9 the surroundings: gaseous or condensed media. Under certain assumptions 
the von Neumann equation may be approximately reduced to the irrevers- 
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ible master equations. There exists extensive literature devoted to this 
subject. O) In Ref. 2, by the present author, special attention was devoted to 
the conditions of the derivation of a master equation for the subsystem we 
are interested in. 

Of course, master equations may serve to describe various rate pro- 
cesses including the kinetics of chemical reactions, but a conventional and 
a simplified description of rate processes is based on the rate equations for 
total concentrations of various species. 

The purpose of this work is to analyze the conditions under which the 
equations for total concentrations (disregarding the distribution over the 
microstates) may be derived from the master equations. Another aim is to 
express the rate constants in terms of the transition rates of the master 
equations. This is the level which will be considered in this paper. 

The most popular theory of rate constants is the so-called transition 
state theory (TAT). (3) This theory gives a very general expression for the 
reaction rates in terms of thermodynamic quantities of initial and transition 
states. Though this theory became the basic tool for processing the experi- 
mental data, the theoretical basis of it is not very clear and is still a subject 
for discussion. Connection of TST with master equations is also not clear. 

On the other hand the stochastic theory of rate constants developed by 
Gibbs, Fleming, and co-workers (4'5) exhibits clear linkage with master 
equations and it expresses the reaction rate constants in terms of the 
transition rates in master equations. The specific feature of this theory is 
that its validity is based on properties of solutions of master equations, 
rather than on relations among parameters of master equations. 

To avoid the danger of not very clearly defined assumptions, specific 
models of chemical reactions were investigated. In 1940 Kramers (6) consid- 
ered the model of particles in the double well potential. The Fokker-Planck 
equation was used to analyze this model and to check the accuracy of TST. 

More recently, Montroll and Shuler, (7) Snider, (8) and Widom (9) con- 
sidered quantum mechanical models of chemical reactions. They found 
rigorous asymptotically exact solutions of the master equations for their 
specific models. 

Thus the situation may be described as follows. On the one hand we 
have expressions for the reaction rates stemming from a fairly general 
framework, but with ill-defined assumptions, and on the other hand we 
have rigorous solutions valid for very specific models. 

We are going to bridge these alternative approaches. We start from 
general master equations and proceed to find rigorous restrictions imposed 
on the parameters of the master equations in order to derive expressions for 
the reaction rates in the equations for concentrations. 
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In Section 2 we consider a general model describing so-called adia- 
batic rate processes. 

Section 3 is devoted to nonadiabatic rate processes. 
In Section 4 we compare results of the work with the above-mentioned 

rigorous solutions (9) and make some concluding remarks. 

2. ADIABATIC RATE PROCESSES 

We will discuss the rate processes in condensed media, (1~ 2) in solu- 
tions, solids, or in huge molecules, but as will be seen from the following, 
the results have more general meaning. 

We divide the whole system into two subsystems: the system we are 
interested in, e.g., the molecules undergoing chemical transitions, and its 
surroundings: a condensed medium. In general one can regard the chemi- 
cal transformations (as well as other rate processes) as transitions from one 
quasistable configuration of nuclei to another. In the framework of the 
Born-Oppenheimer approximation such transitions may occur either at one 
and the same electronic state or between various electronic states. The 
former transitions are called the adiabatic transitions and the latter non- 
adiabatic ones. 

First we will consider the theory of adiabatic rate processes. That 
means that we will specify the subsystem under study by a single potential 
energy hypersurface with two potential wells divided by the barrier (Fig. 1). 

Then, if the interaction of the subsystem with the surrounding medium 
is weak enough (and other conditions are fulfilled (2)) it is possible to derive 
the master equations for the subsystem 

de. 
- ~ ( W n k e  n -- w k n e k )  (1) 

dt  

Here P~ is the probability of the microstate n, and W~k is the rate of 
transition between states n and k. 

We will assume that the temperature of the surrounding medium is 
large enough so that transitions between wells are mainly due to thermal 
fluctuations induced by the medium and the tunneling may be neglected. 
In particular, this may mean that the temperature is larger than characteris- 
tic energy difference h~ 0 between adjacent levels: 

k s T >> h~0 o (2) 

At the same time we consider the temperature region 

kB Z'(.~ f a (3) 

where Ua is the characteristic height of a barrier between two wells. (In the 
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Fig. 1. The potential energy curve represents a hypersurface with two potential wells, ai, 
microstates of A species; bi, microstates of B species; ci, microstate of a transition state C. 

opposite case k 8 T >~ U a one cannot specify well-localized species in wells A 
and B.) 

Though the following analysis has a more general meaning, we have in 
mind some reaction of isomerization (or transfer of a molecular group from 
site A to site B). We define three types of states a, b, and c (Fig. 1). States a 
characterize the isomer A, states b characterize the isomer B, and the states 
c characterize some transition state C. 

Neglecting tunneling, the transition from the states a to the states b, 
i.e., the reaction 

A ~ B (4) 

may proceed only through the transition state C. In other words, the only 
transitions we take into account are those between a, b,  c, themselves, and 
those between a, and c, b and c. Thus, we take into account the following 
transition probabilities: 

wad, Wbb,, Wcc, and wc,,, . W~b, W,, c, Wbc 

The corresponding master equations describing the reaction (4) may be 
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written in the form 

Pa = - E (waa,Pa - wa,aPa,) + E (Wcaec - wacPa ) (5) 
a ~ r 

fib = -- ~.. (Wbb'Pb -- Wb'bPb') + ~ (wcbPb -- WbcPb ) (6) 
b '  c 

a b 

+ - wc, ec,) (7) 
C t 

As is known, for the equilibrium surrounding medium, the transition 
probabilities W~b satisfy the relation 

Wab = Wba exp[ f l ( g  a - Eb) ] (8) 

where E a is the energy of the microstate a and 

fl = 1 / k B T  

In general, one can look for the solutions of Eqs. (5)-(7) in the form of 
the quasiequilibrium expressions 

C A ( t)e- l~e~ C n ( t )e -~E*/XB 

corresponding to the site A and B plus the correction terms ~/a and 7/b, 
respectively. It will be shown later on that these correction terms are small 
provided conditions (3) and (20) are satisfied. 

Thus we write 

P~ = C A ( t ) ( e -~E~  + 71,, 

Pb = C .  ( t ) ( e -Be~ /ZB)  + no (9) 

Pc = N e-BE  

where 

YA = E e-PEo, EB = Z e-~e~ (10) 
a b 

are the statistical sums of the states A and B; C A and C a are total 
concentrations of the species A and B, respectively, 

CA = Y~eo,  CB = Y~I'~ (11) 
a b 

The quantities 7/a and ~/b satisfy the normalization conditions 

E~a---- E~b---- 0 (12), 
a b 
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Substituting (9) into (5)-(7) and using (8), we get 

~a = ~ a  ( W a ' a ~ a ' -  Waa'~a) - -  ~aWca'rla eB(E'-E~) 
a" c 

+ ~aw.aN~e-#E" -- ~ W c a ( e - # e c l Y ~ A ) C  A -- C j ( e - # e ~  (13) 
c c 

ilb = ~ (Wb'b*lb' -- Wbbalb) -- ~ Wcb~lb eB(Eb-E~) 
b' b 

+ 2W~bN~e-~Ec -- 2 W c b C s ( e - ~ E ~ / N 8 )  -- C ~ ( e - r  (14) 
r c 

Here 

- -  ~ , , W c c , ( N  c - Nc ,  ) 4" ~ a W c a ' r l a e ~ ( E " - E D  
c r a 

+ ~.~ WcbTlb e~(jzb-e~) (15) 
b 

"YeA -~" 2 W c a  ' "~cB = ~W~b (16) 
a b 

Performing summation over a and b in (13) and (14) we get 

C A = ~..e-~e~'y~A(N ~ -- (CA/ZA))  -- 2W~.*I,,e-Z(E~176 (17) 
c ca 

CB ~ . . e -~EY " (18) = ~ cB(N~ -- (C~/ZB))  - ~_~Wcb~lbe-~(e~-Eb) 
c cb 

When condition (3) is satisfied it is easy to verify from (13) and (14) that 
~/a, ~/b have the order of the magnitude 

~,~CA(e-~EclY .A)  , ~qb~CB(e-~ec/ZB)  (19) 

Using these estimates one can simplify equations (15), (17), (18) and omit 
terms containing ~a, ~b, provided the following conditions are fulfilled: 

<<1 
aWca (20) 

~bwcbe-t~(Ec-Eb) 
<<1 

~abWcb 
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In this case the equations (15), (17), (18) obtain the form 

filc = (7cA/ZA)CA + (TcB/Y~B)CB -- (YeA + Y~B)N~ -- ~wc~,(Nr - N~,) 
C r 

(21) 

C A = ~ e-~E~ (N~ - (CA/Y~A)) (22) 
C 

C B = Ee-~EcycB(Nc  -- (CB/Y.B)) (23) 
C 

Examining these equations, one realizes that the concentrations CA and CB 
are slow variables in comparison with Arc. The derivatives C A and C B 
contain the extra factor of the order of magnitude exp( -  flU,,) which Nc do 
not contain. It means that in the same approximation (3) one can use the 
steady state condition 

U =0 
Thus we have from (21) 

1 (7~A 7cB ) 1 
N~ - "Y~A + 7cs ~ CA + ~ CB + ~ w~,(N~ - N~,) (24) 

YcA + YcB c" 

The equations (22)-(24) solve the problem of time evolution of the total 
concentrations CA, C B in the course of the reaction. (~0 

In various limiting cases they may be essentially simplified. The 
equation (24) has the exact solution in the case of symmetric wells, when 

EA = Y~B = E, Y~A = "/~B = 7~ 

and 

I (CA+CB) Uc= 

The equations (22), (23) for the concentrations obtain the form 

C A = - k ( C  A - CB)=  - C ~  (25) 

where the reaction rate constant k has the form 

k -  ~Y~e-/~e~ 
2~-, _ 1 ye -#(Fc-F,,) (26) 

Here the mean value of the transition probability equals 

~ y c e  -~E~ 
Y -  E ~e_/~ec (27) 

and the free energies of the initial state F A (=  FB) and the transition state 



482 Fain 

F c are expressed through the statistical sums in the usual way: 

e-#F~ = ~,, e-ae~ e-#F~ = E e - ~  (28) 
a c 

The equations (22)-(24) may also be simplified in two limiting cases: 
(a) The relaxation between microstates c of the transition state C is 

much slower than relaxation from the state c to the states a and b: 

(29) Y~A, Y~B >> W~c, 

In this case the approximate solution of (24) takes the form 

1 ( YcA Y~B ) 

and the equations for the concentrations CA and C n obtain the form 

d A = - k A a C  A + k . A G  = - ( ~ .  

where 

(30) 

(31) 

k A B  = .YACBe--#( Fc-- FA) 
(32) 

knA = .YACBe--fl( Fc-- FB) 

Here, again, F c is the free energy of the transition state, and F A, F B are 
those of the states A and B. The preexponential factor in (32) is defined by 
the formula 

"t~a "/c~ e_~Ec (33) E 
Y~A + 7c. 7ACa ~ e_~F~ 

c 

It is easy to verify that the ratio of the rate constants (32) is equal to the 
equilibrium constant 

as it should be. 

CA) kBA = e--/3(F.,--FB) (34) 

(b) The relaxation between the microstates c of the transition state C is 
much faster than relaxation from the transition microstate c to the states a 
and b: 

"/cA, 7cB << Wcc' (35) 

To analyze this case we will express Nc through Pc [see (9)] and rewrite (24) 
in the form 

(v A (36) 
C' 
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Performing summation over c in this formula we get 

~c(TcA + ycB)Pc = ~ ~ - f C  A + ~-~C.  e -Be~ (37) 

One can check from (36) that neglecting terms of the order of magnitude 
y/c.4/Wr [they are small according to the condition (35)] it is 
possible to present Pc as 

Pc = c~ -BEc= Nce-Bec (38) y---~ e -- 

where c o is found by substituting (38) for (37): 

2o [ "/cA C Y/cB C (39) C 0 - -  ! 

Here 

~cTcA e-~ec ~cYcB e -BEc 
"/cA- ~ce_/~Eo , "Yc.~-  ~ce_Be c (40) 

Substituting expressions for N~ from (38), (39) for (22), (23) we again get 
the rate equation (31) with the rate constants equal 

ka B = YCA YCB e -  B( Fc- FA) 
"/CA + YCB (41) 

kB A = YcAYcB e-B(Fc-FB) 
YCA -4- YCB 

The expressions (40), (41) coincide with those found by Gibbs, Fleming and 
co.workers.(4, 5) As we see, their expressions are obtained as a specific case 
from the general formalism. Of course the expressions (41) satisfy the 
relation (34). 

3. NONADIABATIC RATE PROCESSES 

Another possible class of rate processes are the so-called nonadiabatic 
transitions. In this case each of species A and B has its own corresponding 
potential energy--electronic energy as a function of the coordinates of 
nuclei. The minimum of each potential energy hypersurface corresponds to 
(quasi) stable configuration of nuclei. We assume that these potential 
energy hypersurfaces are intersecting ones (Fig. 2). The experience of the 
theory of Landau-Zener transitions (12) teaches us that at high enough 
temperatures (neglecting tunneling) the effective transitions are between 
microstates a and b (of A and B) which lie above the intersection point of 
minimal energy. 
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Fig. 2. Two intersecting potential energy curves represent two intersecting potential energy 
hypersurfaces, ai, b i, microstates lying below the intersection point with minimal energy; 
o9, flj, microstates lying above the intersection point. 

Thus  we introduce two kinds of microstates  A : a and  a, and  two kinds 
of microstates  B: b and  /3. Microstates  a and  /3 lie above  the point  of 
intersection of min imal  energy. The  transit ion probabil i t ies be tween these 
states are assumed to be  much  larger than  those a m o n g  states a and  b (the 
latter corresponds  to the tunneling). 

The  corresponding mas te r  equat ions take the fo rm 

Pa = -- E (Waa'ea -- Wa'aea') -- E (Waetea -- waaea ) (42) 
a I o t  

Pb = -- E (Wbb'eb -- Wb'be') -- • (wb~eb -- w~bet~ ) (43) 
b' fl 

f'o = - E (wooe~ - wooeo ) - E (woeeo  - w~oe~ ) 
a f l  

- Y .  (w~o.?o - wo.oP~.) 
Ol I 

i'~ = - E (Webe~ -- W b : b )  -- E ( w , o e e  - W o : o )  

- E (w,:..P, - w~.,?~.) 

(44) 

(45) 
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First, let us consider the case when the transition probabilities between 
different electronic states are much smaller than those among different 
levels in the same state A or B 

w~B << W~a,, w,~,,  w ~ ,  Wbb,, . . . (46) 

In this case the probability distribution of microstates of state A or B may 
be approximated by the expressions 

Pa = C A ( t ) - - ~ ' - -  + 0  , ' ' '  
Waa, 

cA(t  +o , . . .  , 

where 

(47) 

etc. 

Y'a = E e-/~e~+ E e-B& (48) 
a a 

Here we neglect corrections of the thermodynamic equilibrium in each state 
of A and B. These corrections are small due to the condition (46). 

Substituting expressions (47) (without small corrections) for the master 
equations (41)-(44) we get the rate equations for the overall concentrations 
C A and Ce of species A and B 

C A = - k a u C  A + k B A C  B (49) 

(50) 

all the 

where the rate constants are equal to 

~, ,~w,~#e - ee~ ~ , ~ w e , ~ e -  BEe 

kaB - Z a  ' k s a  - EB 

These expressions are also valid in the case when a, /3 take 
meanings, including a and b. It means that they may also take into account 
tunneling between the microstates of A and B. These expressions may be 
used at all temperatures. 

In the case of high temperatures when the tunneling may be neglected 
and the temperatures simultaneously satisfying the condition (3), the ex- 
pression may be approximately rewritten in the form explicitly exhibiting 
the Arrhenius law 

kAB = we -B(~A-FA), knA = we  - p ( ~ - F ~ )  (51) 

w -- (52) 
"~,ae-,SE~ 

where 

~ 

e -BFA = ~-~e -BE~ e -~FA = ~]e  -/~E~ (53) 
o t  a 
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It is easy to check that the thermodynamic equilibrium relation (34) is 
satisfied by the expressions (50)-(53). 

Now, let us consider the case opposite to (46), i.e., the case 

w~ >> wetet,, w~, (54) 

We assume that the condition (3) is satisfied. 
This case may be analyzed similarly to case (35) of adiabatic transi- 

tions. The resulting rate constants have the form 

]CAB_ gAgB e--fl(Fo--FA) 
gA + gB 

(55) 
k B A _  gArB e-B(Fo-Fs)  

g.~ + YB 

where the free energy of the "activated complex" (of the "transition state") 
is defined as 

e -BF~ = E e - B E ~  ~ , e  - / je~= Z o (56) 
et 

and 

e - BFA = ~ e - Beo, 
a 

The constants ga, gs are defined as 

E eta Weta e - l~eo 

gA-- 220 , 

e--BFB = ~ e-Be~ (57) 
b 

~ flb W Bb e - ~E~ 
gB - Xo (58) 

As can be seen from the comparison of formulas (41) and (55), the 
nonadiabatic transitions in the case (54) exhibit a very close similarity to 
the adiabatic transitions. In this case the reaction rates kAs ,  k~, 4 are deter- 
mined not by transition probabilities wet B between states A and B, but by 
the relaxation rates Weta, WBb between various microstates at the same 
electronic hypersurfaces A or B. 

4. C O N C L U D I N G  REMARKS 

To gain better insight into the essence of the expressions obtained for 
the reaction rates, it is instructive to compare them with rigorous asymptoti- 
cally exact expressions of Widom. (9) For this purpose we recall Widom's 
results and identify them in terms of the present work. In Fig. 3 the 
stepladder model of Widom and connection with our designations are 
shown. Widom's formulas are valid for fixed 

a = e - f l  e 



Theory of Rate Constants: Master Equation Approach 487 

Adio bor ic model Non - o d i o b o t i c  mode l  

c 
c zl  z _ _  b. 

aN_l z-- ~ bN-=~-- aN_ I - -  bN_l 

CIN-2 , b N -'~- ~ 

Uo=(N-I)( 

o 3 - -  b 3 - -  a 3 - -  b 3 
6 E 

02 - -  b 2 - -  a 2 1  - -  b 2 
E 

0 1  . b I - -  a I - - -  - -  b ]  

A B A B 

Fig. 3. S tep ladder  m o d e l  o f  Widom.  (9) E, e n e r g y  d i f f e r e n c e  b e t w e e n  t h e  ad jacen t  levels; 

z = Waa' = Wbb', d o w n w a r d s  t rans i t ion  probabi l i t ies ;  a z  = w,,a = Wb,b, upwards  t rans i t ion  prob-  

abi l i t ies;  Wca = l, Fcb= z = W a c / a  = W b J a  , t rans i t ion  probabi l i t i es  be tween  t rans i t ion  s ta te  

C a n d  state a and  b in the ad iaba t i c  mode l ;  W,,,~b, ~ = WbNaN = ~" t rans i t ion  probabi l i t i es  
be tween  states  A and  B in the nonad i aba t i c  model .  

and  N ~ 0% where the activation energy is equal 

U~ = ( N  - 1)c 

The quantity c is the energy difference between the adjacent levels (the 
energy spectrum is equidistant). It is clear that condition N ~  oo corre- 
sponds to our condition (3), since 

U~/ksT= - ( N -  1) lna  >> 1 

and  

a ~ r  = e - # v ~  (59) 

In Table I we compare the corresponding formulas of Widom with ours. 
(These formulas are valid for the symmetric case.) 

We see that the formulas of the present work and those of Widom 

Table I 

Reac t ion  rates  

W i d o m ' s  pape r  (9) Present  work  

A d i a b a t i c  t rans i t ions  

kAB = kB.. 1 = �89 -- ot)Ee -SUa kAB = kBA = �89 -- ot)e -pUa 

N o n a d i a b a t i c  t rans i t ions  

(1 - a )  2 kA B = ks.4 z ( l  - a)~" e _ # V  " 
kAn = k~A = [(1 -- ~t)/~']  + 2 / z  z + 2~  
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coincide, provided 

a<<l 
This condition coincides with that of (20) which for the stepladder model 
has the form 

EaWca e-fl(Ec-Ea) ze -fie 
- - -  - a < <  1 ( 6 0 )  

E Wca Z 

Another instance when the formula of the present work coincides with that 
of Widom is the case of small nonadiabatic transitions (46) which corre- 
sponds to 

~<<z 

In this case our formulas coincide with those of Widom, not dependent 
upon the fulfillment of condition (60). [Of course the condition (60) is not 
very realistic since it means 

k s T  << e 

In this case the tunneling may play an important role. In Widom's model 
this possibility is excluded.] 

In general, the condition (20) may be rewritten in the form 

~A E~ e-~(E~- E~ 
((  1 (E  c ~ Ea) (61) 

% N 

where 

V~c~ = ~,~e_B(ec_eo ) ff~cA- 

and N is the total number of the states a. When ~cA and kcA are of the 
same order of magnitude (this is not the case in the Widom model) the 
conditions (61) [and (20)] are satisfied. 

Connection with the transition state theory (TST) should be remarked 
upon. The starting point of our consideration was the use of the master 
equations. This implies that the transition probabilities determining the 
reaction rates are much smaller than the characteristic frequencies of the 
unperturbed motion. On the other hand, in TST the reaction rates are 
determined by the characteristic frequency of unperturbed motion k e T / h .  
Thus we cannot compare our formulas with those of TST. Our results 
conform to the analysis of Kramers [6] according to which the reaction rate 
is proportional to the viscosity 77 (and not to k s T / h )  for the case of small 
viscosities. 

In conclusion, we again stress that the main result of the present work 
is the consistent derivation of the rate equations for the macroscopic 
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concentrations from the master equations describing the evolution of the 
microstates. Both adiabatic and nonadiabatic transitions were considered 
and various specific cases were analyzed. 
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